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Abstract This study is an evaluation of an exact mathematical model recently developed by the present 
authors [ 1,2] to treat the generalized solidification problem, subject only to the constraint that the interfacial 
heat-transfer coefficient be an invariant. The technique involves the mathematical expedient of representing 
components of the interfacial thermal resistance by virtual layers of solid metal and/or mould and is 
described as the Virtual Adjunct Method (VAM). It is demonstrated that the kinetic and thermal description 
predicted by the model reduces to that expected in three simple limiting cases previously subjected to exact 

analysis. It is also shown that the simple kinetic equations S = A$ - B, empirically found to be appropriate 
in some cases, may be derived from the model under certain boundary conditions. These are investigated and 
applied to specific casting situations and a rationale developed which appears to explain experimental 
observations. Finally, the model is examined in generalized cases of mixed thermal control. Comparison is 
made between the predictions of the model and the results of numerical computations for situations in which 
the thermal resistances of (a) metal and interface and (b) metal, interface and mould are significant. This is 
done using measured values for heat-transfer coefficients and comparison is extended to encompass 

experimental kinetic and thermal data. The performance of the model is shown to be excellent. 

NOMENCLATURE 

thermal diffusivity of solid metal, 

(= k&Q [m2/sl ; 
constant of the empirical equation (14), 

(S = Ad - B) [m/s”2]; 
heat diffusivity of solid metal, 

[ =J(k,c,d,)] [J/m* sl’* K] ; 
constant of the empiiical equation (14), 

(S = A$ - B) [m]; 

specific heat mould material [J/kg K] ; 
specific heat of solid metal [J/kg K] ; 
density of mould material [kg/m31 ; 
density of solid metal [kg/m31 ; 
thickness of ‘pre-existing’ adjunct to 
mould in virtual system [ml; 
Newtonian heat-transfer coefficient of 
metal/mould interface [J/m* s K] ; 
latent heat of fusion of metal [J/kg] ; 
thermal conductivity of mould ma- 

terial [J/m s K] ; 
thermal conductivity of solid metal 

[J/m s Kl ; 
thickness of solidified metal in real 

system [m] ; 
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thickness of solidified metal in virtual 

system [m] ; 
thickness of ‘pre-existing’ adjunct to 

metal in virtual systems [ml; 
time from zero point in real system [s] ; 
(absolute) temperature in real and vir- 

tual systems [K] ; 
freezing temperature of metal [K] ; 
(invariant) temperature of hypothetical 

plane at metal/mould interface [K] ; 
temperature at any point in the mould 

WI ; 
initial temperature of mould [K] ; 
temperature at any point in the soli- 

dified metal [K] ; 
velocity of liquid/solid interface in real 

system [m/s] ; 
distance from metal/mould interface in 

real system [m] ; 
distance from metal/mould interface in 
virtual systems [m] ; 
first constant of equation (l), 

(= l/4 a,&*) [s/m21 ; 
second constant of equation (l), 

( = So/2 Q2) [s/ml ; 
dimensionless latent heat of fusion of 

metal, H/c,(T/ - To); 

ratio of heat diffusivities of solid metal 
and mould material, (k,c,dJk,c,d,,J1’* ; 
square root of ratio of thermal 
diffusivities of solid metal and mould 
material, (a,/~,)“* ; 
dimensionless thickness of solidifi- 
cation, shJk,; 
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Ti, 
T:, 

x*(x>o), 

x*(x <O), 
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dimensionless time, t/$/lk,(~,d,; 

dimensionless temperature at any point 
in the mould, (T, - T,,)/( T, -~ T,,); 
dimensionless temperature at any point 

in the metal, (T, - T,,)/(T, - T,,); 
dimensionless distance mto metal from 

metal;mould interface, .~h~!k,; 
dimensionless distance into mould from 

metal/‘mould interface, slr,/l\, ; 
dimensionless solidification constant, 

equation (4). 

INTRODUCTIOY 

developed by the present authors [I,‘], however. 
requires only that this value be an invariant during the 
process. (It may readily be shown that the generalized 
case of variable hi is not amenable to exact solution.) In 

the general form of this model [l] the simultaneous 
handling ofconductive and Newtonian heat transfer is 
achieved through modelling the interfacial thermal 

resistances (divided into mould and metal side com- 
ponents) by ‘pre-existing’ adjuncts of solid. For calcu- 

lation purposes these are additive (at the interface) to 
the real physical thickness and heat flow may then be 

completely described by manipulation of the basic 

Fourier conduction equations. 

THE DEvELOPhENT of a mathematical model to de- 
scribe the unidirectional solidification of metals is 

complicated by a number of factors. One of the most 
problematical of these is the difficulty of simultaneous 
treatment of heat flow through metal and/or mould by 

thermal conduction and across the metal/mould in- 
terface by Newtonian heat transfer. The mathematical 
approaches used to tackle this subject may be very 

broadly grouped into two classes, according to wheth- 

er or not the treatment incorporates any mathemati- 
cal approximations. Techniques in which such approx- 

imations are made can be further divided into 
analytical [3%3] and numerical/graphical [9 131 me- 
thods. These may be mathematically versatile but 
often suffer from lack of generality and/or simplicity. 

It has been shown [1,2] that the Virtual Adjunct 
Method (VAM) gives a mathematically exact de- 
:scription of the generalized solidification problem, in 
which both interfacial resistance and thermal capacity 
of solidified metal are of significance. It describes, of 

course, an approximation to the real physical situ- 
ation and requires that interfacial heat transfer be 

modelled by a constant coefficient. 

In this paper, the equations representing the pre- 

dictions of the model are presented. These are first 
examined for three simple limiting cases, which cor- 

respond to previously-developed exact treatments. It 

will be demonstrated that the kinetic and thermal 
behaviour predicted by the model conforms to expec- 

ted mathematical descriptions in these extrema. 
Mathematically exact treatments, on the other It will then be shown that a classical empirical 

hand, frequently necessitate unrealistic physical as- equation sometimes found appropriate to describe the 
sumptions. For example, until recently all exact ap- kinetics of solidification may be derived by manipu- 
proaches placed restrictions on the value of the lation of the model under certain boundary conditions. 
interfacial heat-transfer coefficient [I4 1X]. A model From this treatment, deductions may be made about 

Mould SolId 

FIG. 1. Division of system into mould and metal components and relationship between real and virtual 
systems in these regimes. 
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The kinetics of solidification and thermal profile 

during the process are described by the equations 

(1) t = rS2 + B.S. 

T, = T” + 2+,,:;, 

x [I+d(g:::~)] 05 K 5 S, (2a) : - 

T 

m 
= T + (T/ - To)M 

0 ___-~ 
M + erf($) 

x I 0 (2b) 

where 

@a) 

the situations in which the equation would be expected 

to apply. 

Finally, the predictions of the model when applied 

to specified cases, which are generalized in terms of 
heat flow control, will be compared with those pro- 
duced by application of a standard finite difference 
numerical technique. This will be done for both chilled 

and massive uncooled moulds and compared with 

experimental data. 

THEORETICAL 

(i) General mociel ( VAM analysis) 
The model is derived under a set of suppositions 

similar to those frequently assumed in treatments of 
the unidirectional solidification problem. Only uni- 
dimensional, conductive heat flow is considered, 

together with Newtonian transfer across the metal/ 
mould interface through a constant heat transfer 

coefficient, hi. All material properties are invariants, 

the freezing interface is macroscopically planar and 
liquid superheat is negligible. These conditions may all 
be simulated experimentally and only the last causes 

significant loss of applicability. Modifications ac- 

counting for the effect of superheat may, however, be 

introduced into both the present and previous models 
[16,19]. Freezing from a chill corresponds to a special 

case of this analysis. 
Heat flow is treated in two regimes, separated by a 

hypothetical plane of constant temperature located in 

the metal/mould interface. Mould and metal side 
contributions to the thermal resistance of this interface 

are now modelled by ‘pre-existing’ adjuncts of solid 

material. A two-part coordinate system is set up to 
describe distance from the plane of constant tempera- 

ture (on both sides). These two virtual coordinate 

systems are displaced from the real coordinate origin 
by the thickness of the virtual adjuncts introduced, as 
illustrated in Fig. 1. Heat flows in these two regimes are 
now handled independently, being linked only by 
equality of heat flux across and temperature (Ti) at the 

hypothetical plane. 
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FIG. 2. Thermal profiles during freezing according to the 
treatments of (a) Chworinoff, (b) Stefan, (c) Flemings. 

p= Hds 
hi(Tf - TO) 

(=2S,u) (3b) 

and 

&~#~exp(d’)[M+erf($~)] = cS(TLTo) (= A). 

(4) 

The meanings of the symbols are given in the Nom- 

enclature. Reference is made to the original papers 
[1,2] for an outline of the development of these 

equations. 

(ii) Limiting cases 
(a) Insuhting mould (Chworinof treatment). This 

case, applicable to moulds of low heat diffusivity, was 
first described by Chworinoff [20], giving the 
following : 

Ts = Tf, 

The form of the thermal profile represented by equa- 
tion (6b) is shown in Fig. 2(a). 



It may be demonstrated that the same kinetic 
behaviour is predicted by the VAM analysis: the fact 
that there is no thermal discontinuity at the metal’ 
mould interface implies that Ifi --+ I . so that /i --+ 0. 
Furthermore, because $ must become small for large 

M, equation (4) will reduce to 

from which it is easily seen that equations (1) and (5) 
simplify to the same form. It also follows that equation 

(2a) will reduce to the correct identity, as the contri- 
bution of the two error functions will clearly become 
negligible as M becomes large and (1, correspondingly 
small. Finally, in the limits \j ---t 0 and M B 1, equation 
(2b) clearly reduces to 

and on substitution for S from equation (5) and for 
N[J(a,/a,)], it can be seen that this is equivalent to the 
Chworinoff prediction. 

(b) Rejiiig&ared rn~u~d~~erf~~t contac~t (Sfttfiut iwot- 

mat). This is one of a number of idealized cases in 
which the mould is assumed a perfect heat sink, so that 

it remains at temperature T,. An implication of this 
condition is that M + 0. The second requirement for 

the model to be a good approximation is that S ‘2, 
(k,/hJ. This is often simply stated as hi 4 T., requiring 

excellent interfacial contact, but it may be additionally 

noted that the description would be expected to 
become more appropriate as S increases (i.e. later in 

the process). 
The model was first outlined by Stefan [ 181 and the 

relevant equations in this case are 

(91 

T =T +(T,2!!erf’. s 
s 0 

erf(4) t -1 ,ZJ’(u,,t ) I 
(lOal 

T,,, = To (lob) 
so that the thermal discontinuity at the metal/mould 
interface is again assumed negligible, as indicated by 
the thermal profile shown in Fig. 2(b). 

It again follows from the condition izi -+ K that the 

kinetic descriptions of equations (I ) and (9) coincide. 

For the thermal profile in the solid metal, substitution 
of the conditions M = 0 and /j = 0 in equation (2a) 
leads to 

T 
F 

= T 0 (111 

which, on substitution for S from equation (O), gives 
the same result as equation (10a). The mould tempera- 
ture is easily seen to be To by substitution of M = 0 in 
equation {2b), so that the model also gives complete 
agreement in this case. 

(c) Refrigerated rn~~ld~~nter~~~ ~~oini~lufe(i ( Flem- 
ings tr~utme~t~. This treatment may be regarded as a 

complementary limiting case to that of Stefan I‘hc 
mould is again assumed &t perfczt heat s~nh. but In this 
case the thermal resistance of the ~)lidil’ying metal is 

assumed small compared with I hat presented by the 
metalmould interface. The requirement\ for tins tn~~- 
del may thus be expressed a\ ,3I . 0 Ad s (\ ik, ifi). 

The mathematics are extremely ~,mlple hccausc the 

only temperature change in the thermal profile 1’; a 
~iisc~~iltinu~~us drop at the interface The equation 

describing the kinetics. prcsentcd hj 1, Icmin~~ [ 17 1. 
among others, is also \ery clenicnt;ir!. 

ilZ) 

The thermal profile has the simple form shown in Fig. 2 

(c). 
The appropriate form of equation (I I IS easily 

obtained by comparing the contributions of the two 

terms on the RHS: 

Because the boundary conditions require that 
(h,S/k,) ---+ 0, it is clear that equation (1) reduces to the 
same form as equation (12). Similarly. on substituting 
(crS/p)-+ 0 (and knowing that the maximum value of :; 

is S) and M - 0 in equation (2a), this simplifies to the 

identity ‘r, = T,. Finally. equation (2bl must reduce to 
Y-, = To because of the condition iI1 4 0. 

A number of equations relating thickness solidified 

(S) to time (t) have been found to give reasonable 
~igreement with experiment under different circum- 
stances. For example, a simple parabolic relationship 
holds for casting in insulating mouids and this con- 
forms to the Chworinolfpredictions. Similarly, a direct 
linear relationship is occasionally observed with rapid 
heat extraction situations, as expected with limiting 
case (c). although this is not very common with 

conventional casting set-ups. 
However, an equation which is quite frequently 

found to give a good agreement with experimental 
behaviour for casting in conducting moulds [21 261 is 

s = A, i -- B. Ilit) 

so that the behaviour is pred~~Illinantly parabolic, but 
with an apparent ‘incubation time’ before appreciable 
solidification takes place which seems to be finite 
even for very low superheat. This equation has not 
been derived analytically from an exact mathematical 
description, but it will be shown to correspond to 
behaviour expected from the present model under 
specified boundary conditions. (Similar inferences may 
be made from some approximate analytical treat- 
ments, such as that of Adams [5].) 

It is actually simple to understand qualitatively the 
kinetic behaviour conforming ~lppr~~xinlatel~ to the 
eyuation in question. Figure 3 tllu~rates how the 
initial linear regime (I) gives rise tit the observed 
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FIG. 3. (a) Successive thermal profiles and (b) S,‘$ plot for 
freezing in chill moulds with significant interfacial resistance, 
showing how the increasing contribution of the thermal 
resistance of solidified metal results in the initial linear regime 
(1) giving way to parabolic behaviour (3) through a transition 

range (2). 

displacement (represented by a finite value of B) of the 
plot for the parabolic regime (3) when compared with 
the II, = x case. These two regimes are separated by a 
transition range. the position of which is approx- 
imately defined by S,( z&hi). It might be argued that 
two conditions are required for the equation to be an 
appropriate description: that hi CC x-so that the 
Stefan treatment is inapplicable-and that S, CC S, 
(the total thickness to be solidified)-so that the 
disagreement at the start is not significant. These 
conditions may now be investigated via the present 
model. 

Clearly equation (1) may be rewritten 

s = _i!-+@‘_+4”f, 
2a 

from which, taking the meaningful root, 

(1% 

(16) 

which is clearly of the form in question when 

(1W 

$ -I 0 
N 

or, putting this condition in a form which illustrates 
the requirement in terms of hi 

FIG. 4. Variation of the function (H*4b,/hJ2 (which controls 
the duration of the period before the kinetic plot coincides 
with the equations S = Ad - B) with interfacial heat-transfer 
coefficient for solidification of Fe and Al in different types of 

conducting moulds. 

(17b) 

where the heat diffusivity of the solid metal is now 
designated b,. The RHS of this inequality represents 

the datum point on the ,,/? axis approximately cor- 
responding to the transition region and the equation 

is operative for y /; values which are appreciably iarger 
than this. 

Furthermore, the model can also be used to in- 
vestigate the S, << S, condition. Assuming equation 
(18) to be a good approximation and substituting for 

I \ \ +.Cu in iron 
M=3 

FIG. 5. Dependence of the function (1/2@H*), controlling 
the deviation of the kinetic plot from the equations S = 
A,/; - B during the transition period, on metal/mould 

parameters (l/H*) and M. 



S,, from the mathematics of the model [l, 21 this 
condition may be written 

employing hi allows the ett’ect of imperfect CL~III;IC~ tit 
be simulated and leads to the :ilporitlmi~ 

where t, is the total freezing time. The RHS of this 

inequality defines a second datum point on the “it 
axis: if this is considerably greater than that cor- 
responding to the transition region, then a further 
condition is imposed requiring long rI (i.e. large S,.) for 
the equation to be appropriate. 

In summary, the RHS of inequality (17b) controls 
the duration of the initial eon-agreement period, and 
these times are shown as a function of hi for solidifi- 
cation of steel and aluminium (representative of the 
common non-ferrous metals) in Fig. 4. Finally, the 
parameter (l/2 @H*), a large value of which will 
impose the further requirement of a long tf, is shown as 
a function of l/H* and M in Fig. 5. The use of such 
figures in furthering understanding of the observed 
kinetics in specified cases is amplified in the discussion 
section. 
(iv) Ge~eruliz~~ ruses 

Theoretical examination of generalized cases was 
undertaken by utilizing a fairly simple computer 
program describing unidirectional solidification with 
a planar freezing interface, This was applied to solidifi- 
cation of (a) aluminium from a chill and (b) lead from a 
massive mould. In the next section these predictions 
are compared with those from the VAM model and 
with experimental data. 

The computer model used is based on heat transfer 
between incremental volume elements of finite extent. 
A number of workers [9-131, [27-301 have outlined 
applications of the finite difference method to the 
phase change heat-transfer problem and there have 
also been studies of programming aspects, including 
optimization of input/output format [31]. 

The algorithm to be applied for conduction between 
successive pairs of elements in metal and mould may 
be written 

a& 
Tj(t + sf) = Tj(r) + GyyTTITj+l(f) 

+ Tj- i(t) - 2Tj(r)] (20) 

where a is the thermal diffusivity and the step incre- 
ments 6t and 6s must be chosen such that 

“J?- < 0.5. 
@x)2 - (21) 

For the solidification problem, the effect of latent 
heat evolution must be taken into account. This is 
done by artificially maintaining the 7th element (in 
solid at solid/liquid interface) at a temperature T, and 
accumulating the heat content effectively discounted 
by doing this: interface advance is only permitted 
when this discounted heat content reaches the level 
necessary to freeze the next element. 

A heat flux balance at the metal/mould interface 

- 7’;m(t)J __ [‘l‘,,(t) -. ‘ri,(f):] j (J&j 

_ TbJt)] ~ ]7’,,,tt) - 7 ,,,, ir)J I>. 172b) 

A similar expression may be applied at the outer 
surface of the mould if hea1 is being lost to the 
surroundings. 

The generalized cases were examined experimen- 
tally by freezing lead against (a) a water-cooled chill 
and (b) a massive uncooled steel mould. The experi- 
mental set-ups used to simulate these two situations have 
been described [ 1,2]. In the case of the chill mould, the 
thickness solidifies (S) was measured at suitable time 
intervals using a precision dipstick arrangement. For 
application to massive moulds. however, the position 
of the freezing front was mol~itored via the output of a 
bank of line thermocouples. accurately located with 
respect to the metalimould interface. 

Experiments were carried out under two sets of 
thermal contact conditions at the metal/mould in- 
terface, corresponding to the heat-extracting surface 
being (a) polished and (b) coated with a thin 
(- 100 pm) layer of insulating alumina (applied with a 
spray gun). The appropriate values of 11~ for each case 
were found by suitable manipulation of the kinetic 
data (see references [ 1,2]): if a graph is plotted of t/S 
against S, a straight line is expected, with an intercept 
on the t/S axis (fi) which is related to h, via properties of 
the metal 

(‘3a) 

In fact, deduction of the value of II, from the intercept 
on a graph of tjS against S is quite independent of the 
actual or assumed kinetic behaviour. This is because, 
in the limit S -+ 0, heat flow, and thus the kinetics of 
interface advance, must in all cases be interface 
dominated (for the zero superheat case): for this 
regime, therefore, the Fiemings analysis [19] (see (ii) 
(c) of the Theoretical section) is appl~c~ible so that 

Clearly the value of hi obtained in this way will be that 
operative at the beginning of freezing. However, 
linearity of the plot of t/S against S indicates that hi is 
remaining constant during solidification. 

The following data are presented in dimensionless 
form, using the metal and mould properties given in 
Appendix I. By presenting the data in this way, 
measurements made with different thermal contact 
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Expertmental points 
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Theorecticoi 

--- Fintte difference 
- VAM 

Theoretical 
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0 123456789 
SX 

FIG. 6. The kinetics of the freezing of lead from a planar chill. 
Comparison of the predictions from the VAM analysis with 
those from a numerical technique. Also shown are experimen- 

tal data from dipstick measurements. 

conditions (coated and polished mould surfaces) can 
be included on the same graph 

(a) Chill mould 

Figure 6 shows the datum points obtained from 
dipstick readings observed at regular time intervals 

during solidification of lead, converted to dimension- 

less form by employing the appropriate value of hi 
(deduced in the manner outlined above). These are 
compared with the curves representing the predictions 
of the VAM model and of the finite difference tech- 

nique. It can be seen that both predictions are close to 
the experimental curve. 

A further comparison between theory and experi- 
ment was made by examining the change in tempera- 

ture of the solid metal with time. The output from a 

FE 8. The kinetics of the freezing of lead from a massive 
mould (thickness = 100 mm) of low alloy steel. The experi- 

mental data were obtained from thermocouple readings. 

thermocouple located at the metal/mould interface 
was combined with the corresponding t/S plot to give 

the dependence of T, on S. These parameters were 
then reduced to dimensionless form to give the plots 
shown in Fig. 7, which refers to a polished mould 

surface. Agreement is again seen to be quite good. 

(b) Massitie mound 
Figure 8 is a kinetic plot for lead freezing against a 

steel mould of effectively infinite thickness (see [l] for 
investigation of effectively finite thicknesses). It is 
again clear that, using the same values for hi the 
prediction of the VAM treatment coincides closely 
with that of the numerical technique as well as giving 
good agreement with experiment. 

Finally, Fig. 9 gives data representing the thermal 

history of the metal surface for the coated interface 

Theoretical 

--- Fmlte difference 
- VAM 

Experrmentol 
,... 

I I I I I I I I I 
0 I 2 3 4 5 6 7 a 9 

S* 

FIG. 7. Thermal history of the metal side of the metal/mould interface for lead freezing from a chill wtth a 
polished surface hi = 4.2 kJm-’ s-r K-r. The experimental curve was obtained by combining the output 

from a therm~ouple located at the interface with experimental t/S data. 
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Theoretical 

I , , , , , ,~y*jIce, / 

0 0, 02 03 04 05 06 07 08 09 IO I 12 
s* 

FIG 9. Comparison between theory and experiment for the 
thermal history of the metal side of the metaljmould interface 
for lead solidifying against a massive steel mould with a 

coated surface. (hi = 0.75 kJm_* S-I K-‘). 

case, the temperature being plotted against thickness 
solidified by combination with the appropriate t/S 

curve. Theoretical predictions are also shown and it 

can again be seen that the three curves are in good 
general agreement. 

It may be noted parenthetically that the thermal 
measurements represented in Figs. 7 and 9 may be 
slightly high due to the difficulty in locating the 
thermocouple junction exactly at the interface: in 
practice, it was probably recording the temperature a 

short distance into the body of the metal. More 
extensive thermal data are included in the earlier 

paper IIll. 

DISCUSSION 

It is clear that the thermal and kinetic description of 

the new model reduces to the expected form in all three 
of the presented limiting cases. This apparently simple 
requirement is actually not met by any other exact 

model. For example, the Schwarz treatment [14], 
representing the most general previous description, 
cannot be used to deal with the high interface re- 

sistance case. 
The utility of the model has been examined by its use 

to explore the conditions under which the empirical 

equation S = A$ - B would be expected to be an 
appropriate discription of the kinetics of solidification. 
Applying this analysis to individual cases, it can be 
seen from Fig. 4 that, for given mould and interfacial 

contact, the actual kinetics will be expected to coincide 
with the prediction earlier in the process for ferrous 
casting than for most non-ferrous cases. This obser- 
vation is particularly apposite for the range of values of 
hi (-0.5-2 kJm-* K-’ s-l) to be expected in practice 
with various types of mould coating, which is 
sufficiently low to make the Stefan treatment 
inaccurate. 

A further characteristic which emerges from the 
analysis concerns the total thickness which must be 
solidified in order to give the data plot as a whole the 
general appearance of coincidence with the above 
equation. Examination of Figs. 4 and 5 will allow this 
to be investigated for any given case. For example, 

aluminium solidified in a cast iron tnoultl wtth II, . 
2kJm-’ K-’ s-’ would give a transition point 

between linear and parabolic behaviour as early as 

z 1 s, but inspection of Fig. 5 reveals a value of the 

function ( l/2(b2H*) of around six so that, from 
inequality (19) the total solidification time will have to 
be considerably greater than about 50 times this 
period. This actually indicates that an appreciable 
thickness solidifies during the transition period (al- 
though this is relatively short), giving a more marked 

deviation from the prediction of the equation ; S, must 
therefore be increased to make this less noticeable. 

in fact, it also emerges from this aspect that the 

equation S = A\/; - B would be expected to be 
highly appropriate for all ferrous casting in coated 

metal moulds, which ties in with experimental obser- 
vation [2lL26]. For non-ferrous metals. it is generally 
expected to be a much poorer description, although 

this may not be so for some combinations of hi, S, and 

metal/mould properties. Individual cases can be exam- 
ined via the present analysis. It is in any event clear that 

use of the VAM model, which is both relatively simple 

to employ and of complete generality, is much to be 
preferred to empirical descriptions, the applications of 
which are often both restricted and difficult to define in 
exact terms. 

The generality of application of the model has been 

confirmed by comparison with the predictions of a 
finite difference numerical model. The most probable 

area of utility of the VAM approach would be in 
providing a rapid and simple description of the 
kinetics of freezing for cases of mixed thermal control 

(thermal resistances of metal and/or mould and of 
metal/mould interface of significance). The compa- 
risons presented here have confirmed that a degree of 

confidence may be placed in the predictions of the 
model under these circumstances. While it is clear that 

numerical treatment is indispensible when there are 
complications such as effectively finite mould thick- 
ness, appreciable mushy zone length, markedly non- 

linear heat flow, continuous variation in hi etc., it does 
seem likely that the VAM model will find useful 
applications in providing, simply and rapidly, a reli- 
able description of a number of real casting 
situations-an achievement notably lacking with 
previously-developed exact analyses. 

A new analytical model describing unidirectional 
solidification of metals freezing with a planar 
solidPliquid interface has been examined in limiting 
and generalized cases. It was first confirmed that the 
description reduced to the correct forms under certain 
simplifying boundary conditions corresponding to 
previous exact analyses. The model was then utilized 
to examine a more complex limiting case-that cor- 
responding to situations in which the empirical equa- 

tion S = Ad’; - B gives a good description of the 
kinetics of freezing. This examination shed light on the 
kinetic behaviour in such cases and facilitated their 
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incorporation into an overall rationale. Finally, gen- sample solutions, J. Heat Transfer 81, 106 (1959). 

eralized cases were examined by selecting specific 11. A. Lazaridis, A numerical solution of the multidimen- 

metal/mould/surface condition combinations and as- 
sional solidification (or melting) problem, Znt. .I. Heat 

sessing the performance of the model against numeri- 
Mass Transfer 13, 1459 (1976). 

12. R. D. Pehlke, Unidirectional analysis of heat transfer 
cal predictions (and experimental data). The de- during continuous casting, Metals Engng Q. 42,42 (1964). 

scriptions afforded by the model were found to be 13. D.A. Peel and A. E. Pengelly, Heat transfer, solidification 

satisfactory in all cases. 
and metallurgical structure in the continuous casting of 

It is clear that the development of an exact analytical 
aluminium, ISI Sp. Rep. 123, 186 (1968). 

14. C. Schwarz, cited by R. W. Ruddle in Solidification of 
model capable of describing the case of heat flow castings (1957), Arch. EisenhiittenWes 5, 139 (1931). 

controlled by the thermal resistances of metal, mould 15. 
and metal/mould interface represents a significant 
advance. In this paper, it is confirmed that the kinetic 
and thermal description provided by this model 16. 

conforms well to experimental conditions under cer- 
tain imposed constraints and agrees with predictions 
obtained by numerical mathematical techniques. 17. 

Exact analyses have hitherto been of very limited use 
due to their inability to take account of imperfect 

18. 

thermal contact at the metal/mould interface (except 
when interface resistance dominates those ofmetal and 19. 
mould). The present model, however, should be of 
considerable use in describing real situations. 
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APPENDIX I 

Metal Properties 

Metal 

Tr 
(R) (‘R, (i) &) ($J ($) 

Lead 600 25 31 0.138 11.1 
Steel (En27) - 300 33 0.486 7.9 

H.M.T. 23/6--c 
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EVALUATION DUN NOUVEAU MODELE DU TRANSFERT THERMIQUE 
PENDANT LA SOLIDIFICATION UNIDIRECTIONNELLE DES METAUX 

Resume On tvalue un modtle mathematique exact ricemment developpd par les auteurs [ 1.21 pour traiter 
le probleme generalise de la solidification, uniquement limiti par un coefficient de transfert thermique 

interracial suppose invariant. La technique suppose l’expedient mathtmatique de representation des 
composantes de la resistance thermique interfaciale par des couches virtuelles de metal solide et/au de moule 
et elle est d&rite comme mithode de I’adjoint virtue1 (VAM). On montre que la description cinetique et 

thermique predite par le modele se reduit a ce qui est attendu dans trois cas simples limites anttrieurement 

&dies dam une analyse exacte. On montre aussi que l’equation simple S = AJr - B, trot&e empirique- 
ment appropriee dans quelques cas, peut etre dirivee du modtle sous certaines conditions aux limites. Ceci 
est appliquce a des situations de forgeage et une analyse est developpie pour expliquer les observations 
experimentales. Le modele est ensuite applique ri des cas de commande thermique mixte. On fait des 
comparaisons entre les precisions du modele et les resultats du calcul numeriques pour des situations dans 

lesquelles les resistances thermiques du metal/interface sont significatives. Pour cela on utilise les mesures des 

coefficients de transfert thermique et la comparaison est &endue pour couvrir les donnees cinetiques et 

thermiques. Le modele est montre itre excellent. 

BEWERTUNG EINES NEUEN MODELLS FUR DEN WARMESTROM WAHREND 
DER EINDIM~NSIONALEN ERSTARRUNG VON METALLEN 

~~arnrnenfa~ung~~~Diese Studie ist die Anwelldung eines exakten mathematischen Modells, das vor 
kurzem von den Verfassern [ 1 21 entwickelt wurde, urn das ailgemeine Erstarrungsprobiem zu behandeIn, 
mit der einzigen einschr~nkenden Bedingung, daR der W~rme~bergan~skoeffizient zwischen den 
GrenztIachen konstant ist. Die Methode enthalt das mathematische Hilfsmittel der Darstellung von Anteilen 
des thermischen Widerstandes der Grenzschicht durch virtuelie Schichten von festem und/oder 
geschmolzenem Metal1 und wird beschrieben als die Methode der Virtuellen Zusatze (VAM). Es wird gezeigt, 
dab die vom Model1 hergeleitete kinematische und thermische Beschreibung in drei einfachen Grenzfallen, 
die vorher einer genauen Analyse unterzogen wurden, aufdas Erwartete fiihrt. Es wird auberdem gezeigt, da8 

die einfache kinetische Gleichung S = A,,/$ .- B, die empirische in einigen Fallen als geeignet erscheint, unter 
bestimmten Randbedingungen aus dem Model1 abgeleitet werden kann. Diese werden fiir bestimmte 
Situationen des FormgieRens gepriift und angewendet, wodurch anscheinend gewisse experimentelle 
Beobachtungen erkllrt werden k6nnen. Letztlich wird das Model1 in allgemeinen Fallen gemischter 

Temperaturftihrung gepriift. Die Berechnungen nach dem Model1 und Ergebnisse von numerischen 
Rechnungen werden verglichen, bei denen der thermische Widerstand von (a) Metal1 und GrenzRPche und 
(b) Metall, Grenzflache und Form van Bedeutung sind. Dieses geschieht unter Verwendung gemessener 
Werte von W~rme~bergangskoe~zienten, wobei der Vergleich aufex~rimentelle kinetische und thermische 

Daten ausgedehnt wird. Das Model1 erweist sich als ausgezeichnet. 

OHEHKA HOBOH MO,IIEJIM TEIIJIOOGMEHA HPM HAIlPABJIEHHOM 
‘JATBEP~EBAHMM METAJIJIOB 

AHHoTauHn - ticc_rlenoBaHue IIpoeeiIeHo c UenbIo npoeeplts TOYHO~~ MaTeMaTsuecKoil Monene, npen- 

no~esnofi aBTopaMa paHee nnn peIIIeHwn o606IUeHHoti 3anaqe 3aTBepnesaUun a cnyqae. Kornd 

K03@HUAeHT TenJIOW+HOCa Ha i-PaHllUe pa3JleAa +a3 RBJUETCII nOCTORHWbIM. MeTOiI OCHOBbIBaeTCR 

IIa nocnoii~o~ (arm Tsepnoro MeTanna U/mm npecc+opMbI) npencTasnemie KoMnouenT Me@a3onoro 

TeIIJIOBOrO COnpOTNBJIeHIIa II OIIIICbIaaeTCa KBK MeTOli BIIpTyaJIbHbIX ,!IOIIOaHeHHfi. nOKa3aH0, VT0 

C ilOMOLQbl0 AaHHOi? MOLWIH KHHeTHWCKOe N TeIUIOBOe OnKCaHNe MOmHO CBeCTW K TFM IIpOCTbiM 

ripe~e~~bH~M CnyranM. TO’IHbIti aUanw3 ROTOpbIX 6bIn BbInOnHe~ paaee. floKa3au0, 9TO IIpII onpene- 

neUnbIX rpa~~~nbIx ~CJIOBIIHX fi3 Monenn MO~HO BbmecTu npocToe KUneTUyecKoe ypaBueaUe S = 

A, I - B. ~B,~a~~eeca CnpaBe,~n~BbtM i?JIR pana Cc~yYaeB. npOBeDeH0 WCCJIi?iTOBLlHN6! PTBX fpaHWIHbIX 

ycnossi%, KoTopbIe np~MeHeH~ K cneu~anbHbIM cnyYaaM nuTba. flpoaeneea o6pa6oTKa 3KcnepeMeU- 

Fd,IbHbIX pe3y,IbrdTOB. k% HaKOHeII, MOLWIb npOBepeHa “a 061mix C.IQ’YaRX CMeUlaHHOrO TCnnOBOrO 

KOHTpO,W. npOBeL,eHO C&,aBHeHHe pe3yJIbTaTOB, nOJIy’IeII”bIX C nOMOIUbm MOUe.3II C ~3yJIbTaTaMn 

qUcneHnbIx pdcqe-roe. Koraa cymecTseesbIMw I(BJIIIK)T~I TermoBoe conpoTssnenUe (a) MeTanna tf 

rpaHaUbI pa3nena II (6) MeTanna. rpaIIsub1 pasaena w npecc-+opMbl. C 3’I’Ofi UenbIo IIJMepanHCb 

K03(jN$WUIIeHTbI rennoo6MeHa II WCIlOJIb30BaJIHCb 3KCIIepIIMeHTaJIbHbIe LIaHIlbU! 110 KHHeTIIKe IInOUeCCa 

II TeImOO6MeHy. lloKa3aua IIpurounocTb MonenU ilna paccMaTpnsaeh+oro Knacca 3anar. 


