Int. J. Heat Mass Transfer. Vol. 23, pp. 773-782
Pergamon Press Ltd. 1980. Printed in Great Britain

ASSESSMENT OF A NEW MODEL FOR HEAT FLOW
DURING UNIDIRECTIONAL SOLIDIFICATION OF
METALS
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Abstract — This study is an evaluation of an exact mathematical model recently developed by the present
authors [ 1, 2] to treat the generalized solidification problem, subject only to the constraint that the interfacial
heat-transfer coefficient be an invariant. The technique involves the mathematical expedient of representing
components of the interfacial thermal resistance by virtual layers of solid metal and/or mould and is
described as the Virtual Adjunct Method (VAM). It is demonstrated that the kinetic and thermal description
predicted by the model reduces to that expected in three simple limiting cases previously subjected to exact
analysis. Itis also shown that the simple kinetic equations S = A\ﬂ — B, empirically found to be appropriate
in some cases, may be derived from the model under certain boundary conditions. These are investigated and
applied to specific casting situations and a rationale developed which appears to explain experimental
observations. Finally, the model is examined in generalized cases of mixed thermal control. Comparison is
made between the predictions of the model and the results of numerical computations for situations in which
the thermal resistances of (a) metal and interface and (b) metal, interface and mould are significant. This is
done using measured values for heat-transfer coefficients and comparison is extended to encompass
experimental kinetic and thermal data. The performance of the model is shown to be excellent.
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r*, dimensionless time, thi/kcd,;

Tk, dimensionless temperature at any point
in the mould, (T,, — T)AT, — Ty):

T%, dimensionless temperature at any point
in the metal, (T, — T AT, — Ty):

x*(x>0), dimensionless distance into metal from
metal/mould interface, xh;/k,:

x*(x<0), dimensionless distance into mould from
metal/mould interface, xh;/k,,:

?, dimensionless solidification constant,

equation (4).

INTRODUCTION

THE DEVELOPMENT of a mathematical model to de-
scribe the unidirectional solidification of metals is
complicated by a number of factors. One of the most
problematical of these is the difficulty of simultaneous
treatment of heat flow through metal and/or mould by
thermal conduction and across the metal/mould in-
terface by Newtonian heat transfer. The mathematical
approaches used to tackle this subject may be very
broadly grouped into two classes, according to wheth-
er or not the treatment incorporates any mathemati-
cal approximations. Techniques in which such approx-
imations are made can be further divided into
analytical [3-8] and numerical/graphical [9--13] me-
thods. These may be mathematically versatile but
often suffer from lack of generality and/or simplicity.

Mathematically exact treatments, on the other
hand, frequently necessitate unrealistic physical as-
sumptions. For example, until recently all exact ap-
proaches placed restrictions on the value of the
interfacial heat-transfer coefficient [14-18]. A model
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developed by the present authors [1,2}, however,
requires only that this value be an invariant during the
process. (It may readily be shown that the generalized
case of variable h; is not amenable to exact solution.) In
the general form of this model [1] the simultaneous
handling of conductive and Newtonian heat transfer is
achieved through modelling the interfacial thermal
resistances (divided into mould and metal side com-
ponents) by ‘pre-existing’ adjuncts of solid. For calcu-
lation purposes these are additive (at the interface) to
the real physical thickness and heat flow may then be
completely described by manipulation of the basic
Fourier conduction equations.

It has been shown [1,2] that the Virtual Adjunct
Method (VAM) gives a mathematically exact de-
scription of the generalized solidification problem, in
which both interfacial resistance and thermal capacity
of solidified metal are of significance. It describes, of
course, an approximation to the real physical situ-
ation and requires that interfacial heat transfer be
modelled by a constant coefficient.

In this paper, the equations representing the pre-
dictions of the model are presented. These are first
examined for three simple limiting cases, which cor-
respond to previously-developed exact treatments. It
will be demonstrated that the kinetic and thermal
behaviour predicted by the model conforms to expec-
ted mathematical descriptions in these extrema.

It will then be shown that a classical empirical
equation sometimes found appropriate to describe the
kinetics of solidification may be derived by manipu-
lation of the model under certain boundary conditions.
From this treatment, deductions may be made about
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FiG. 1. Division of system into mould and metal components and relationship between real and virtual
systems in these regimes.
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the situations in which the equation would be expected
to apply.

Finally, the predictions of the model when applied
to specified cases, which are generalized in terms of
heat flow control, will be compared with those pro-
duced by application of a standard finite difference
numerical technique. This will be done for both chilled
and massive uncooled moulds and compared with
experimental data.

THEORETICAL

(1) General model (VAM analysis)

The model is derived under a set of suppositions
similar to those frequently assumed in treatments of
the unidirectional solidification problem. Only uni-
dimensional, conductive heat flow is considered,
together with Newtonian transfer across the metal/
mould interface through a constant heat transfer
coefficient, h;. All material properties are invariants,
the freezing interface is macroscopically planar and
liquid superheat is negligible. These conditions may all
be simulated experimentally and only the last causes
significant loss of applicability. Modifications ac-
counting for the effect of superheat may, however, be
introduced into both the present and previous models
[16, 19]. Freezing from a chill corresponds to a special
case of this analysis.

Heat flow is treated in two regimes, separated by a
hypothetical plane of constant temperature located in
the metal/mould interface. Mould and metal side
contributions to the thermal resistance of this interface
are now modelled by ‘pre-existing’ adjuncts of solid
material. A two-part coordinate system is set up to
describe distance from the plane of constant tempera-
ture (on both sides). These two virtual coordinate
systems are displaced from the real coordinate origin
by the thickness of the virtual adjuncts introduced, as
illustrated in Fig. 1. Heat flows in these two regimes are
now handled independently, being linked only by
equality of heat flux across and temperature (T;) at the
hypothetical plane.

The kinetics of solidification and thermal profile
during the process are described by the equations

r =28 + BS, (1)
(T =Ty)
R_R+M+mw
B+ 20x
x [M + erf<d)ﬁ " 2aS>:| 0<x<8S, (2a)
Tn=Ty+ (I, - ‘TO)M
M + erf(¢)
X l+erf< 2aNx — p <0 (2b
[ B + 2aS = (2b)
where
vw, (3a)
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F1G. 2. Thermal profiles during freezing according to the
treatments of (a) Chworinoff, (b) Stefan, (c) Flemings.

Hd
=T, =1y (75 (3b)
ans 0
and
ST b exp(¢?) [M +erf(@)] = ﬂfl{‘ﬂ)(: %)

(4)

The meanings of the symbols are given in the Nom-
enclature. Reference is made to the original papers
[1,2] for an outline of the development of these
equations.

(i1) Limiting cases

(@) Insulating mould ( Chworinoff treatment ). This
case, applicable to moulds of low heat diffusivity, was
first described by Chworinoff [20], giving the

following:
Hd, \* 1
=2 s ©)
A\T; —Ty) kpdCp
T,=T, (6a)

To=To+(T;—T,) { + erf[z\/(a t):l} (6b)

The form of the thermal profile represented by equa-
tion (6b) is shown in Fig. 2(a).
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It may be demonstrated that the same kinetic
behaviour is predicted by the VAM analysis: the fact
that there is no thermal discontinuity at the metal;
mould interface implies that h; - s, so that f§ — 0.
Furthermore, because ¢ must become small for large
M, equation (4) will reduce to

_all, = Ty)

A/IH\_/;?[

¢ {7
from which it is easily seen that equations (1) and (5)
simplify to the same form. It also follows that equation
(2a) will reduce to the correct identity, as the contri-
bution of the two error functions will clearly become
negligible as M becomes large and ¢ correspondingly
small. Finally, in the limits § — 0 and M » 1, equation
(2b) clearly reduces to

xN¢
Tp=Ty+ (T~ TO)I'l + Crf(wg: )\l 8)

and on substitution for S from equation (5) and for
N[./(a4/a,)], it can be seen that this is equivalent to the
Chworinoff prediction.

(b) Refrigerated mould/perfect contuct ( Stefun ireut-
ment ). This is one of a number of idealized cases in
which the mould is assumed a perfect heat sink, so that
it remains at temperature T,. An implication of this
condition is that M — 0. The second requirement for
the model to be a good approximation is that § »
(k,/h;). This is often simply stated as h; — ., requiring
excellent interfacial contact, but it may be additionally
noted that the description would be expected to
become more appropriate as S increases (i.e. later in
the process).

The model was first outlined by Stefan [ 18] and the
relevant equations in this case are

t : N 9
da .’ )
T,—T [ X
Ty=To+ 5 L——O)erf(- ,,\ - ) (10a)
erf(¢) 2/ (a1}
T,=T, {10b)

so that the thermal discontinuity at the metal/mould
interface is again assumed negligible, as indicated by
the thermal profile shown in Fig. 2(b).

It again follows from the condition h; — x that the
kinetic descriptions of equations (1) and {9} coincide.
For the thermal profile in the solid metal, substitution
of the conditions M = 0 and f§ = O in equation (2a)

leads to
(T, —T) ((f)\)
T =T ———erf[ — |,
< o+ erf(¢) <r

which, on substitution for S from equation (9), gives
the same result as equation (10a). The mould tempera-
ture is easily seen to be T, by substitution of M = 0 in
equation (2b), so that the model also gives complete
agreement in this case.

{c) Refrigerated mould/interface dominated ( Flem-
ings treatment ). This treatment may be regarded as a

(1)
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complementary limiting case 1o that of Stefan. The
mould is again assumed a perfect heat sink, but in this
case the thermal resistunce of the solidifying metal s
assumed small compared with that presented by the
metal/mould interface. The requirements for this mo-
del may thus be expressed as M — Oand § « {k. /).
The mathematics are extremely simple because the
only temperature change in the thermal profile 5 a
discontinuous drop at the mterface. The equation
describing the kinetics, presented by Flemings [17]
among others, s also very elementury.
Hd,
[ S.
hi(T; Tn)

The thermal profile has the simple form shown in Fig. 2
(c).

The appropriate form of equation (1} 15 easily
obtained by comparing the contributions of the two
terms on the RHS:

{12}

a8t edT, —1y) (S } 0

S 4He? {k

K

Because the boundary conditions require that
(h,S/k,} — 0, it 1s clear that equation {1} reduces to the
same form as equation {12). Similarly. on substituting
(xS/B)— 0 (and knowing that the maximum value of x
is §) and M — 0 in equation (2a), this simplifies to the
identity T, = T,. Finally. equation (2b} must reduce to
T, = T, because of the condition M — 0.

(i) Classical kinetic equation

A number of equations relating thickness solidified
(S} to time {r) have been found to give reasonable
agreement with experiment under different circum-
stances. For example, a simple parabolic relationship
holds for casting in insulating moulds and this con-
forms to the Chworinoff predictions. Similarly, a direct
linear relationship is occasionally observed with rapid
heat extraction situations, as expected with himiting
case (¢), although this is not very common with
conventional casting set-ups.

However, an equation which is quite frequently
found to give a good agreement with experimental
behaviour for casting in conducting moulds [21 267 is

S= Ay~ B, (14)

so that the behaviour is predominantly parabolic, but
with an apparent ‘incubation time’ before appreciable
solidification takes place- which seems to be finite
even for very low superheat. This equation has not
been derived analytically from an exact mathematical
description, but it will be shown to correspond to
behaviour expected fromi the present model under
specified boundary conditions. (Similar inferences may
be made from some approximate analytical treat-
ments, such as that of Adams [5])

It is actually simple to understand qualitatively the
kinetic behaviour conforming approximately to the
equation in question. Figure 3 illustrates how the
initial linear regime (1) gives rise to the observed
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F16. 3. (a) Successive thermal profiles and (b) S/\ﬁ plot for

freezing in chill moulds with significant interfacial resistance,

showing how the increasing contribution of the thermal

resistance of solidified metal results in the initial linear regime

(1) giving way to parabolic behaviour (3) through a transition
range (2).

displacement {represented by a finite value of B) of the
plot for the parabolic regime (3) when compared with
the h; = « case. These two regimes are separated by a
transition range, the position of which is approx-
imately defined by S,(~k,/h;). [t might be argued that
two conditions are required for the equation to be an
appropriate description: that h; « x—so that the
Stefan treatment is inapplicable—and that §, « §;
(the total thickness to be solidified)—so that the
disagreement at the start is not significant. These
conditions may now be investigated via the present
model.
Clearly equation {1} may be rewritten

_ BB A+ A

S ™ (15)
from which, taking the meaningful root,
t
S = \/<; + S%) — So. (16)
which is clearly of the form in question when
! » §3, (17a)
[y 4

or, putting this condition in a form which illustrates
the requirement in terms of k;
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{17b}

where the heat diffusivity of the solid metal is now
designated b,. The RHS of this inequality represents
the datum point on the \ﬂ axis approximately cor-
responding to the transition region and the equation

(18)

is operative for \/; values which are appreciably larger
than this.

Furthermore, the model can also be used to in-
vestigate the S, « §, condition. Assuming equation
{18) to be a good approximation and substituting for

- Cu in iron
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- AL tniron

M=l
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FiG. 5. Dependence of the function (1/2 $2H*), controlling

the deviation of the kinetic plot from the equations § =

A\/ t — B during the transition period, on metal/mould
parameters (1/H*) and M.
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Sy from the mathematics of the model [1,2] this
condition may be written

o HYob, I
Nl » h, (1 + —Z—(fv)jﬁ* )

{19)

where ¢ is the total freezing time. The RHS of this

inequality defines a second datum point on the V/t
axis: if this is considerably greater than that cor-
responding to the transition region, then a further
condition is imposed requiring long 1, (i.e. large S ) for
the equation to be appropriate.

In summary, the RHS of inequality (17b} controls
the duration of the initial non-agreement period, and
these times are shown as a function of k, for solidifi-
cation of steel and aluminium (representative of the
common non-ferrous metals) in Fig. 4. Finally, the
parameter (1/2¢*H*), a large value of which will
impose the further requirement of a long ¢, is shown as
a function of 1/H* and M in Fig. 5. The use of such
figures in furthering understanding of the observed
kinetics in specified cases is amplified in the discussion
section.

(iv) Generalized cases

Theoretical examination of generalized cases was
undertaken by utilizing a fairly simple computer
program describing unidirectional solidification with
a planar freezing interface. This was applied to solidifi-
cation of (a) aluminium from a chill and (b) lead from a
massive mould. In the next section these predictions
are compared with those from the VAM model and
with experimental data.

The computer model used is based on heat transfer
between incremental volume elements of finite extent.
A number of workers [9-13}, [27-30] have outlined
applications of the finite difference method to the
phase change heat-transfer problem and there have
also been studies of programming aspects, including
optimization of input/output format [31].

The algorithm to be applied for conduction between
successive pairs of elements in metal and mould may
be written

adt

Tt + 3t) = Tf1) + 607 [Tja00)

+ Tioy(t) = 2T 0] (20)

where a is the thermal diffusivity and the step incre-
ments &t and dx must be chosen such that
O 03,
{ox)*

For the solidification problem, the effect of latent
heat evolution must be taken into account. This is
done by artificially maintaining the Ith element (in
solid at solid/liquid interface) at a temperature T, and
accumulating the heat content effectively discounted
by doing this: interface advance is only permitted
when this discounted heat content reaches the level
necessary to freeze the next element,

A heat flux balance at the metal/mould interface

21

employing h; allows the effect of imperfect contact 1o
be simulated and leads to the algorithms

4.13(5[;) j()',\'h,- (740

Tilt + 61) = Ty - 2

oxT ]k,
= Til)] = [T (1) = Ty(1)] : {22a)
Tonlt +3t) = Tylt) + 2 (’“{"i’ ) {"f‘h,’ [Tlt)
Cox )k, _
= Tend}] — [ 7ot} — '!‘,,,,s’z)]? {22b}

>
(-
A similar expression may be applied at the outer
surface of the mould if heat is being lost to the
surroundings.

EXPERIMENTAL AND RESULTS

The generalized cases were examined experimen-
tally by freezing lead against (a) a water-cooled chill
and (b) a massive uncooled steel mould. The experi-
mental set-ups used to simulate these two situations have
been described [ 1,2]. In the case of the chill mould, the
thickness solidifies (S} was measured at suitable time
intervals using a precision dipstick arrangement. For
application to massive moulds, however, the position
of the freezing front was monitored via the output of a
bank of fine thermocouples, accurately located with
respect to the metal/mould interface.

Experiments were carried out under two sets of
thermal contact conditions at the metal/mould in-
terface, corresponding to the heat-extracting surface
being (a) polished and (b) coated with a thin
(~ 100 um) layer of insulating alumina (applied with a
spray gun). The appropriate values of h; for each case
were found by suitable manipulation of the kinetic
data (see references [1,2]): if a graph is plotted of 1/S
against §, a straight line is expected, with an intercept
on the 1/§ axis (#) which is related to b, via properties of
the metal

hy= —Hd‘; . {23a)
(T, ~ To)ff

In fact, deduction of the value of h; from the intercept
on a graph of t/S against S is quite independent of the
actual or assumed kinetic behaviour. This is because,
in the limit $ — 0, heat flow, and thus the kinetics of
interface advance, must in all cases be interface
dominated (for the zero superheat case): for this
regime, therefore, the Flemings analysis [19] (see (i)
{c) of the Theoretical section} is applicable so that

t Hd, )
(=P

- (23b
h) hi{Tf =Ty ( :

Clearly the value of k; obtained in this way will be that
operative at the beginning of freezing. However,
linearity of the plot of ¢/S against S indicates that h; is
remaining constant during solidification.

The following data are presented in dimensionless
form, using the metal and mould properties given in
Appendix I. By presenting the data in this way,
measurements made with different thermal contact
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F1G. 6. The kinetics of the freezing of lead from a planar chill.

Comparison of the predictions from the VAM analysis with

those from a numerical technique. Also shown are experimen-
tal data from dipstick measurements.

conditions {coated and polished mould surfaces) can
be included on the same graph.

(a) Chill mould

Figure 6 shows the datum points obtained from
dipstick readings observed at regular time intervals
during solidification of lead, converted to dimension-
less form by employing the appropriate value of I
(deduced in the manner outlined above). These are
compared with the curves representing the predictions
of the VAM model and of the finite difference tech-
nique. It can be seen that both predictions are close to
the experimental curve.

A further comparison between theory and experi-
ment was made by examining the change in tempera-
ture of the solid metal with time. The output from a
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FiG. 8. The kinetics of the freezing of lead from a massive
mould {thickness = 100 mm) of low alloy steel. The experi-
mental data were obtained from thermocouple readings.

thermocouple located at the metal/mould interface
was combined with the corresponding /S plot to give
the dependence of T;; on S. These parameters were
then reduced to dimensionless form to give the plots
shown in Fig. 7, which refers to a polished mould
surface. Agreement is again seen to be quite good.

{b) Massive mould

Figure 8 is a kinetic plot for lead freezing against a
steel mould of effectively infinite thickness (see [1] for
investigation of effectively finite thicknesses). It is
again clear that, using the same values for h; the
prediction of the VAM treatment coincides closely
with that of the numerical technique as well as giving
good agreement with experiment.

Finally, Fig. 9 gives data representing the thermal
history of the metal surface for the coated interface

e

0.5+

*
7is

Theoretical

-~ Finite difference
L Y $X

Experimental

0 t 2 3 4

F1G. 7. Thermal history of the metal side of the metal/mould interface for lead freezing from a chill with a

-2

polished surface ;, = 4.2kJm

s~ ! K~ !. The experimental curve was obtained by combining the output

from a thermocouple located at the interface with experimental /S data.
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Fi1G. 9. Comparison between theory and experiment for the

thermal history of the metal side of the metal/mould interface

for lead solidifying against a massive steel mould with a
coated surface. (h; = 0.75kJm s ' K™!).

case, the temperature being plotted against thickness
solidified by combination with the appropriate t/S
curve. Theoretical predictions are also shown and it
can again be seen that the three curves are in good
general agreement.

It may be noted parenthetically that the thermal
measurements represented in Figs. 7 and 9 may be
slightly high due to the difficulty in locating the
thermocouple junction exactly at the interface: in
practice, it was probably recording the temperature a
short distance into the body of the metal. More
extensive thermal data are included in the earlier

paper [1].

DISCUSSION

It is clear that the thermal and kinetic description of
the new model reduces to the expected form in all three
of the presented limiting cases. This apparently simple
requirement is actually not met by any other exact
model. For example, the Schwarz treatment [14],
representing the most general previous description,
cannot be used to deal with the high interface re-
sistance case.

The utility of the model has been examined by its use
to explore the conditions under which the empirical

equation § = A\ﬂ — B would be expected to be an
appropriate discription of the kinetics of solidification.
Applying this analysis to individual cases, it can be
seen from Fig. 4 that, for given mould and interfacial
contact, the actual kinetics will be expected to coincide
with the prediction earlier in the process for ferrous
casting than for most non-ferrous cases. This obser-
vation is particularly appos:te for the range of values of
h; (~0.5-2kIJm™2 K~ ! s !) to be expected in practice
with various types of mould coating, which is
sufficiently low to make the Stefan treatment
inaccurate.

A further characteristic which emerges from the
analysis concerns the total thickness which must be
solidified in order to give the data plot as a whole the
general appearance of coincidence with the above
equation. Examination of Figs. 4 and 5 will allow this
to be investigated for any given case. For example,
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aluminium solidified in a cast iron mould with h; ~
2kIJm~? K~!' 57! would give a transition point
between linear and parabolic behaviour as early as
~ 15, but inspection of Fig. 5 reveals a value of the
function (1/2¢*H*) of around six so that, from
inequality (19), the total solidification time will have to
be considerably greater than about 50 times this
period. This actually indicates that an appreciable
thickness solidifies during the transition period (al-
though this is relatively short), giving a more marked
deviation from the prediction of the equation ; S, must
therefore be increased to make this less noticeable.

In fact, it also emerges from this aspect that the
equation § = AV/; — B would be expected to be
highly appropriate for all ferrous casting in coated
metal moulds, which ties in with experimental obser-
vation [21-26]. For non-ferrous metals. it is generally
expected to be a much poorer description, although
this may not be so for some combinations of 4, 5, and
metal/mould properties. Individual cases can be exam-
ined via the present analysis. Itis in any event clear that
use of the VAM model, which is both relatively simple
to employ and of complete generality, is much to be
preferred to empirical descriptions, the applications of
which are often both restricted and difficult to define in
exact terms.

The generality of application of the model has been
confirmed by comparison with the predictions of a
finite difference numerical model. The most probable
area of utility of the VAM approach would be in
providing a rapid and simple description of the
kinetics of freezing for cases of mixed thermal control
(thermal resistances of metal and/or mould and of
metal/mould interface of significance). The compa-
risons presented here have confirmed that a degree of
confidence may be placed in the predictions of the
model under these circumstances. While it is clear that
numerical treatment is indispensible when there are
complications such as effectively finite mould thick-
ness, appreciable mushy zone length, markedly non-
linear heat flow, continuous variation in h; etc., it does
seem likely that the VAM model will find useful
applications in providing, simply and rapidly, a reli-
able description of a number of real casting
situations—an achievement notably lacking with
previously-developed exact analyses.

CONCLUSIONS

A new analytical model describing unidirectional
solidification of metals freezing with a planar
solid—liquid interface has been examined in limiting
and generalized cases. It was first confirmed that the
description reduced to the correct forms under certain
simplifying boundary conditions corresponding to
previous exact analyses. The model was then utilized
to examine a more complex limiting case—that cor-
responding to situations in which the empirical equa-
tion § = A\/; — B gives a good description of the
kinetics of freezing. This examination shed light on the
kinetic behaviour in such cases and facilitated their
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incorporation into an overall rationale. Finally, gen-

eralized cases were examined by selecting specific 1l
metal/mould/surface condition combinations and as-
sessing the performance of the model against numeri- 1,
cal predictions (and experimental data). The de-
scriptions afforded by the model were found to be 13-
satisfactory in all cases.

Itis clear that the development of an exact analytical 14
model capable of describing the case of heat flow
controlled by the thermal resistances of metal, mould |5,
and metal/mould interface represents a significant
advance. In this paper, it is confirmed that the kinetic
and thermal description provided by this model 16.
conforms well to experimental conditions under cer-
tain imposed constraints and agrees with predictions
obtained by numerical mathematical techniques. 17
Exact analyses have hitherto been of very limited use 18
due to their inability to take account of imperfect
thermal contact at the metal/mould interface (except
when interface resistance dominates those of metaland 19
mould). The present model, however, should be of
considerable use in describing real situations.
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Metal Properties

T, T, H k, ‘, d,

Metal K) K) kJ J kJ mg
e —_— —_— ——— —
kg msK kgK m3

Lead 600 — 25 31 0.138 11.1
Steel (En27) — 300 — 33 0.486 79

HM.T. 23/6—cC
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EVALUATION D'UN NOUVEAU MODELE DU TRANSFERT THERMIQUE
PENDANT LA SOLIDIFICATION UNIDIRECTIONNELLE DES METAUX

Resumé: -On évalue un modéle mathématique exact récemment développé par les auteurs [ 1, 2] pour traiter
le probléme généralisé de la solidification, uniquement limité par un coefficient de transfert thermique
interfacial supposé invariant. La technique suppose I'expédient mathématique de représentation des
composantes de la résistance thermique interfaciale par des couches virtuelles de métal solide et/ou de moule
et elle est décrite comme méthode de I'adjoint virtuel (VAM). On montre que la description cinétique et
thermique predite par le modéle se réduit a ce qui est attendu dans trois cas simples limites antérieurement

étudiés dans une analyse exacte. On montre aussi que P'équation simple § = A/t — B, trouvée empirique-
ment appropriée dans quelques cas, peut &tre dérivée du modéle sous certaines conditions aux limites. Ceci
est appliquée a des situations de forgeage et une analyse est développée pour expliquer les observations
expérimentales. Le modeéle est ensuite appliqué a des cas de commande thermique mixte. On fait des
comparaisons entre les précisions du modéle et les résultats du calcul numériques pour des situations dans
lesquelles les résistances thermiques du métal/interface sont significatives. Pour cela on utilise les mesures des
coefficients de transfert thermique et la comparaison est étendue pour couvrir les données cinétiques et
thermiques. Le modéle est montré étre excellent.

BEWERTUNG EINES NEUEN MODELLS FUR DEN WARMESTROM WAHREND
DER EINDIMENSIONALEN ERSTARRUNG VON METALLEN

Zusammenfassung—Diese Studie ist die Anwendung eines exakten mathematischen Modells, das vor
kurzem von den Verfassern [1-2] entwickelt wurde, um das allgemeine Erstarrungsproblem zu behandeln,
mit der einzigen einschrinkenden Bedingung, dal der Wirmeiibergangskoeffizient zwischen den
Grenzfldchen konstant ist. Die Methode enthdlt das mathematische Hilfsmittel der Darstellung von Anteilen
des thermischen Widerstandes der Grenzschicht durch virtuelle Schichten von festem und/oder
geschmolzenem Metall und wird beschrieben als die Methode der Virtuellen Zusdtze (VAM). Es wird gezeigt,
daB die vom Modell hergeleitete kinematische und thermische Beschreibung in drei einfachen Grenzfillen,
die vorher einer genauen Analyse unterzogen wurden, auf das Erwartete fihrt. Es wird auBerdem gezeigt, dal
die einfache kinetische Gleichung § = A\/; ~ B, die empirische in einigen Fillen als geeignet erscheint, unter
bestimmten Randbedingungen aus dem Modell abgeleitet werden kann, Diese werden fir bestimmte
Situationen des FormgieBlens gepriift und angewendet, wodurch anscheinend gewisse experimentelle
Beobachtungen erkldrt werden konnen. Letztlich wird das Modell in allgemeinen Fallen gemischter
Temperaturfihrung gepriift. Die Berechnungen nach dem Modell und Ergebnisse von numerischen
Rechnungen werden verglichen, bei denen der thermische Widerstand von (a) Metall und Grenzfliche und
(b) Metall, Grenzfliche und Form von Bedeutung sind. Dieses geschieht unter Verwendung gemessener
Werte von Wirmeiibergangskoeffizienten, wobei der Vergleich auf experimentelle kinetische und thermische
Daten ausgedehnt wird. Das Modell erweist sich als ausgezeichnet.

OLEHKA HOBOW MOJEJH TEMJIOOBMEHA NMPH HANPABJIEHHOM
3ATBEPIEBAHUHU METAJIJIOB

AnnoTauns — Mcciie1oBanye NPOBEAEHO ¢ UEIbIO NPOBEPKH TOYHOW MATEMATHYECKOH MOJEIH, npel-
JIOXEHHON ABTOPAMH paHee ANg pelleHHs oOOOIIEHHOW 3aja4M 3aTBEpAEBAHMA B Ciy4ae, KOIOa
k02hdUUHMEHT TENJIONEPeRoca Ha rPpaHHUe pasjesia a3 ABIAETCS NOCTOAHHBIM. MeT0/1 OCHOBBIBAETCS
HA MOCAOMHOM (/s TBEPAOro MeTana u/iuiau npecchOpMbl) NPeaCTaBAEHHH KOMHOHEHT MeX(a3oBoro
TENOBOTO CONPOTHMBJACHHA M OMMCBHIBACTCH KaK METON BHPTYaJbHBIX nononnenuit. [lokasano, uto
¢ 1OMOLUBIO NaHHOH MOJEAH KHHETUHECKOE H TEIJIOBOE ONHCAHME MOXHO CBECTH K TPEM NPOCTHIM
npeseibHBIM CHYYasM, TOYHBIA aHann3 KOTOpsIX Obln BhinosHeR paHee. [lokasamo, uto npu onpene-
JICHHBIX TPaHHYHBIX YCJIOBHSX H3 MO/E/TH MOXHO BBIBECTH NPOCTOE KHHETHHMECKOS YPaBHCHHE S =
ALt — B. sBnsrolueeca crpaBeHBbIM IS PAda Ciydaes. [IpOBEJEHO HCCENOBAHME FTHX TPAHHYHBIX
YCHIOBHH, KOTOPbBIC NPHMEHEHBI K CHEHMAJbHBLIM ClyuasM nuTbs. [1posenena obpabotka IKCrepHMEH-
TaapHBIX pe3ynbratoB. M HakoHen, mojens nposepeHa Ha ODHIMX Cy4asX CMELIAHHOrO TEJIOBOTO
koHTpons. [lpopeaeHo cpasHEHHE PE3yALTATOB, MOJAYMEHHBIX C ITOMOMIBIO MOINEAH C PE3YIbTATAMH
YHC/ICHHBIX DACYETOB, KOIJa CYIUECTBEHHBIMH MBIAIOTCA TEMJIOBOE CONPOTHBJCHHE (a) MeTalla H
rpasuusl pasaena u (6) Metanna. rpaHunbl paszgesna u npecc-gopmbl. C 37Ol Lenblo U3IMEPAIHCH
k03¢ PHUMEHTD] TenI00OMEHA M HCIIONb30BAIHCh IKCIIEPHMEHTAJIBHLIE NAHHBIC 10 KHHETHKE Mpolecca
u Tennoobmeny. Tloka3aHa NpUroJHOCTL MOJENH MU PACCMaTPHBAEMOro Kjacca 3aja.



